PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS

George Adams, Ahmed A. Busnaina and Sinan Muftu

the Microcontamination Research Laboratory
Mechanical, Industrial, and Manufacturing Eng. Department
Northeastern University, Boston, MA 02115-5000
OUTLINE

- Goals and Objectives
- Approach
- Preliminary Results
 - Particle Removal Mechanism
 - Double layer
 - Covalent bonds between silica on thermal oxide films and glass particles on glass substrates
 - Adhesion induced deformation
- Key Preliminary Research Results
Surface Preparation Technology Requirements -- Long Term

<table>
<thead>
<tr>
<th>YEAR</th>
<th>1999 (180nm)</th>
<th>2000 (130nm)</th>
<th>2002 (100nm)</th>
<th>2005 (70nm)</th>
<th>2008 (50nm)</th>
<th>2011 (35nm)</th>
<th>2014 (35nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEOL Particle Size (nm)</td>
<td>90</td>
<td>82.5</td>
<td>60</td>
<td>50</td>
<td>35</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>FEOL Particles (#/cm²)</td>
<td>0.064</td>
<td>0.06</td>
<td>0.064</td>
<td>0.051</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
</tr>
<tr>
<td>BEOL Particle Size (nm)</td>
<td>180</td>
<td>165</td>
<td>130</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>BEOL Particles (#/cm²)</td>
<td>0.064</td>
<td>0.06</td>
<td>0.064</td>
<td>0.051</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
</tr>
<tr>
<td>Surface Roughness (nm)</td>
<td>0.15</td>
<td>0.14</td>
<td>0.12</td>
<td>0.1</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Critical surface metals (*10⁹)</td>
<td>9</td>
<td>7</td>
<td>4.4</td>
<td>2.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Organics (*10¹³ atoms/cm²)</td>
<td>7.3</td>
<td>6.6</td>
<td>5.3</td>
<td>4.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

** ---- The International Technology Roadmap for Semiconductors, 2000**
Goals and Objectives

- To determine the adhesion force for different particles on different substrates in different solutions experimentally.
- To understand and determine the onset of large adhesion forces after polishing such as the development of covalent bonds.
- Study the removal and adhesion forces for alumina and silica slurry particles from silicon wafers (with different films, TOX, W, Cu, TaN, BPSG, etc.).
- Develop better cleaning guidelines and techniques to reduce surface defects after polishing.
- In addition, the effect of polishing pressure on the slurry particle adhesion force will be determined.
Approach

- **Fundamental Approach**
- **Experimental and modeling approach to determine, understand and predict:**
 - Particle Adhesion Force
 - Adhesion force increase due to:
 - Particle Deformation
 - Covalent Bonds
 - CMP
 - Slurry and Cleaning Solution Chemistry
 - Pad hardness, compressibility and tensile strength
 - Particle shape
 - Surface Roughness
Approach

- **Fundamental Approach**
- **Key Particle Removal Parameters**
 - Particle shape
 - Polishing pressure
 - Particle size
 - Particle composition
 - Slurry and cleaning solution chemistry
 - Chemical reactions giving rise to covalent bonds
 - Particle deformation
 - Double layer effect
 - Cleaning liquid surface tension
 - Surface and particle surface energy (hydrophilic or hydrophobic)
PARTICLE REMOVAL

Nano-scale particles will be a challenge to current cleaning techniques.

The most widely used cleaning techniques:
- non-contact method (megasonic cleaning)
- contact cleaning method (brush scrubbers)

The two basic elements that need to be understood are:
- Particle Adhesion
- Particle Removal
Particle Adhesion

- Adhesion between a contaminant particle and a wafer occurs in three basic steps:
 - Long-range attraction forces draw the particle towards the surface
 - The contaminant particle touches the wafer at one point of contact
 - Short range van der Waals force dominates near the surface and the contact area increases.
 - Deformation may occur due to adhesion-induced deformation thereby increasing the adhesion force the deformation stops and the system is in equilibrium.
Removal Percentage vs. Moment Ratio (Silica Removal Experiment)
RESULTS

Aging Effect on Glass Particle Removal from FPD

Removal Efficiency vs. Aging Time
aged at 25 degree C, 95%RH
RESULTS

Imprints on the glass surface (megasonic cleaned after aging)
RESULTS

SEM image of glass chips (large bonding areas matched-flat surfaces in contact low profile)
RESULTS

AFM micrograph of surface imprints
AFM three dimensional view of imprints
RESULTS

Bond strength vs. particle diameter (Experiment data compared with Griffith's tensile strength of glass fiber and with Jerkov's tensile strength of glass fiber)
RESULTS

Dry surface, 55%RH aging

Wet surface, 55%RH aging

Wet surface, 100%RH aging

One Week Aging

Six weeks aging

1.58um Silica Particle on Thermal Oxide Wafer
RESULTS

1.58\(\mu\)m silica particle on slurry wetted oxide surface within one hour
RESULTS

Removal Efficiency vs. Aging Time

- **Dry 55%RH**
- **Wet 55%RH**
- **Wet 100%RH**

- Aging Time (week)

- Removal Efficiency
RESULTS

Adhesion Force vs. Aging

- dry 55%RH
- wet 55%RH
- wet 100%RH
- van der Waals force (without deformation)
- van der Waals force (with deformation)
RESULTS

40% Relative Humidity Effect on the Ratio of Contact Diameter/Particle Diameter as a Function of Time

![Graph showing the ratio of contact diameter to particle diameter over aging time for 400nm and 600nm experiment data.]
RESULTS

* graph showing the 95% RH Relative Humidity Effect on the Ratio of Contact Diameter/Particle Diameter as a Function of Time over aging time.
RESULTS

Adhesion Force (400nm PSL Particles)

- Two day 40%RH Aging
- Seven Day 40%RH Aging
- Two day 95%RH Aging
- Seven Day 95%RH Aging

- MP model
- Capillary Force
- Measured Force
SUMMARY

- Moisture plays a significant role in silica particles’ adhesion on silicon oxide substrate. The adhesion force significantly increases with moisture.
- The large meniscus indicates that initially, hydrogen bond forms and as moisture reacts between the surface and the particle, covalent bond forms around the periphery of the particle. If considering practical surface condition, the measured adhesion force fall between hydrogen and covalent bonds.
SUMMARY

The average pressure exerted by surface force between PSL particle and silicon oxide surface is

\[P = \frac{2w_A}{z_0} \]

P is found to be \(1.6 \times 10^9\) Pa, which is comparable to the Young’s modulus of the polystyrene \((2.55 \times 10^9\) Pa) and far in excess of its yield strength \((10.8 \times 10^6\) Pa). This confirms that it is plastic deformation taken place.

- Contact diameter between the particles and the substrate increase with time logarithmically.
- For the same aging time, high humidity (95%RH) shows significant increase in particle deformation compared to the 40%RH conditions. Capillary force tends to accelerate the adhesion-induced deformation process.
- For the same aging conditions, smaller particles encounter larger deformation.
- The plastic deformation is caused by adhesion and capillary stresses that exceed the yield strength of PSL particles.