NANO AND MICROSCALE PARTICLE REMOVAL

Ahmed A. Busnaina
William Lincoln Smith Professor and Director of the Microcontamination Research Laboratory
Northeastern University, Boston, MA 02115-5000
OUTLINE

- Goals and Objectives
- Approach
- Preliminary Results
 - Acoustic Streaming and Boundary Layer
 - Particle Removal Mechanism
 - Double layer
 - Effect of Particle Size and Flow Frequency
- Key Preliminary Research Results
Surface Preparation Technology Requirements -- Long Term

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNOLOGY NODE</td>
<td>180nm</td>
<td>130nm</td>
<td>100nm</td>
<td>70nm</td>
<td>50nm</td>
<td>35nm</td>
<td>35nm</td>
</tr>
<tr>
<td>FEOL Particle Size (nm)</td>
<td>90</td>
<td>82.5</td>
<td>60</td>
<td>50</td>
<td>35</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>FEOL Particles (#/cm²)</td>
<td>0.064</td>
<td>0.06</td>
<td>0.064</td>
<td>0.051</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
</tr>
<tr>
<td>BEOL Particle Size (nm)</td>
<td>180</td>
<td>165</td>
<td>130</td>
<td>100</td>
<td>70</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>BEOL Particles (#/cm²)</td>
<td>0.064</td>
<td>0.06</td>
<td>0.064</td>
<td>0.051</td>
<td>0.052</td>
<td>0.052</td>
<td>0.052</td>
</tr>
<tr>
<td>Surface Roughness (nm)</td>
<td>0.15</td>
<td>0.14</td>
<td>0.12</td>
<td>0.1</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Critical surface metals (*10⁹)</td>
<td>9</td>
<td>7</td>
<td>4.4</td>
<td>2.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Organics (*10¹³ atoms/cm²)</td>
<td>7.3</td>
<td>6.6</td>
<td>5.3</td>
<td>4.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

** ---- The International Technology Roadmap for Semiconductors, 2000**
Goals and Objectives

- Develop an effective nanoscale particle removal technique using acoustic streaming.
- Provide a fundamental understanding of the removal mechanism that will be experimentally verified.
- Experimentally measure particle removal of particles in the size range of 10-100 nm from semiconductor wafers.
- Evaluate effect of streaming flow frequency, velocity amplitude and particle size and particle/substrate composition on the removal efficiency experimentally and numerically.
Approach

- **Fundamental Approach**
- **Experimental and modeling approach to determine, understand and predict:**
 - Particle Removal Mechanism
 - Cleaning Efficiency, $F(R, V, F_{ad}, \text{etc.})$
 - Cleaning tank Geometry (single, batch, etc.)
 - Optimum cleaning conditions
 - Cleaning technology limits with shrinking particle and defect size
Approach

Fundamental Approach

Key Particle Removal Parameters
- flow frequency
- velocity (pressure) amplitude
- Particle size
- Particle composition
- Particle shape
- Particle deformation and contact area
- Double layer effect on removal
- Cleaning liquid surface tension
- Surface and particle surface energy (hydrophilic or hydrophobic)
MEGASONIC CLEANING

- Megasonic sound wave:

\[\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \]

\[p(x, t) = p_0 \sin(kx - \omega t + \Phi) \]

\[u(x, t) = u_0 \sin(kx - \omega t + \Phi) \]

- Megasonic power intensity:

\[I = \frac{p_0^2}{2 \rho c} \]

Megasonic Cleaning Mechanism
ACOUSTIC STREAMING

Streaming Velocity vs. Acoustic Power

Distance From Tank Wall (cm) vs. Intensity (W/cm²)

- f = 760 kHz

- I = .77W/cm²
- I = 1.55W/cm²
- I = 2.33W/cm²
- I = 3.10W/cm²
- I = 3.88W/cm²
- I = 4.65W/cm²
- I = 5.43W/cm²
- I = 6.20W/cm²
- I = 6.97W/cm²
- I = 7.75W/cm²

Streaming Velocity vs. Acoustic Power

- 1 M Hz
- 850k Hz
- 760k Hz
- 360k Hz
PARTICLE REMOVAL

- Nano-scale particles will be a challenge to current cleaning techniques.

- The most widely used cleaning techniques:
 - non-contact method (megasonic cleaning)
 - contact cleaning method (brush scrubbers)

- The two basic elements that need to be understood are:
 - Particle Adhesion
 - Particle Removal
Boundary Layer Thickness

- **Acoustic boundary layer thickness:**
 \[\delta_{ac} = \left(\frac{2v}{\omega} \right)^{\frac{1}{2}} \]
 - in water, \(f=850\text{KHz} \), \(\delta_{ac}=0.61\mu\text{m} \)
 - \(f=760\text{KHz} \), \(\delta_{ac}=0.65\mu\text{m} \)
 - \(f=360\text{KHz} \), \(\delta_{ac}=0.94\mu\text{m} \)

- **The hydrodynamic boundary layer thickness:**
 \[\delta_{H} = 0.16 \left(\frac{v}{Ux} \right)^{\frac{1}{7}} \cdot x \]
 - in water, \(u=4\text{m/s} \), at center of the wafer,
 \(\delta_{H}=2570\mu\text{m} \)
Velocity Profile in a Boundary Layer

\[y = 0 \sim 2500 \text{ micron} \]

\[y = 0 \sim 10 \text{ micron} \]

Velocity Profile \(x = 4 \text{ inch}, \ U = 4 \text{m/s} \)

- Laminar flow
- Turbulent flow
- Acoustic Flow (\(f = 800 \text{kHz} \))
Drag Force Distribution on a Particle

\[F_D = C_D \rho \frac{u_i^2}{2} A_i \]

- \(f = 800 \text{ kHz}, \quad I = 7.75 \text{W/cm}^2, \quad U_{ac} = 4.08 \text{ m/s} \)
- Acoustic boundary layer thickness = 0.63 micron

\[u(y) \text{ (m/s)} \]

- Drag Force (0.5 micron particle)
- Drag Force (1 micron particle)
Effects of Frequency

Acoustic Flow Properties

- Acoustic, f=360KHz
- Acoustic, f=760KHz
- Acoustic, f=850KHz
- Boundary layer thickness (micron)
- Streaming Velocity (m/s)
- Drag Force (1 um particle)
- Drag Force (0.1 um particle)

Frequency (k Hz)

Boundary layer thickness (micron)

Streaming Velocity (m/s)

Drag Force (N)

I = 7.75 W/cm²
Ratio of Removal/Adhesion Moment (RM)

- **RM:**

 \[RM = \frac{\text{Removal moment}}{\text{Adhesion resisting moment}} \]

 \[RM = \frac{F_d (1.399 R - \delta) + F_{dl} \cdot a}{F_a \cdot a} \]

- When RM >1, most particles are removed.

Rolling removal mechanism
Removal Percentage vs. Moment Ratio (Silica Removal Experiment)
Effect of Particle Size on Adhesion and Removal Forces

Forces vs. Particle Diameter \(U = 4 \text{ m/s} \)

- Drag Force (Acoustic Flow, 800kHz, 7.75W/cm², \(U_{ac} = 4 \text{ m/s}, d_{ac} = 0.63 \text{ um} \))
- Drag Force (Hydrodynamic Flow, \(U = 4 \text{ m/s}, d = 2750 \text{ um} \))
- Double layer force
- Van der Waals Force, PSL/\(\text{SiO}_2\)
- Van der Waals Force, \(\text{SiO}_2/\text{SiO}_2\)

- Drag force, electrical double layer force, and adhesion force all increase with particle size.

- Acting as removal forces,
 - \(d>100\text{nm}\), acoustic flow drag force is dominated;
 - \(30\text{nm}<d<100\text{nm}\), drag force and electrical double layer force are on same level;
 - \(d<30\text{nm}\), electrical double layer force is dominated;
At the pH of water, silica, PSL, PVA, and W particles are all negatively charged.

The high negative zeta potentials are measured at high pH solution for SiO$_2$, Si$_3$N$_4$, Al$_2$O$_3$, tantalum pentoxide, tungsten, polyvinyl alcohol (PVA), and also for Si and PSL.

Using a high pH cleaning solution, electrical double layer force occurs as a strong repulsion between the particle and the substrate.
Using DI water only, the removal of nano-size particles (10-100 nm) can be best accomplished using acoustic streaming at frequencies larger than 1.3 MHz.
Effects of Frequency on RM

DI water, Electrical double layer force is negligible

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>RM no F_{el} (1µm SiO$_2$/SiO$_2$)</th>
<th>RM no F_{el} (0.1µm SiO$_2$/SiO$_2$)</th>
<th>RM no F_{el} (1µm PSL/SiO$_2$)</th>
<th>RM no F_{el} (0.1µm PSL/SiO$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>10^6</td>
<td>10^5</td>
<td>10^4</td>
<td>10^3</td>
</tr>
<tr>
<td>10^2</td>
<td>10^7</td>
<td>10^6</td>
<td>10^5</td>
<td>10^4</td>
</tr>
<tr>
<td>10^3</td>
<td>10^8</td>
<td>10^7</td>
<td>10^6</td>
<td>10^5</td>
</tr>
<tr>
<td>10^4</td>
<td>10^9</td>
<td>10^8</td>
<td>10^7</td>
<td>10^6</td>
</tr>
</tbody>
</table>

SC-1, Electrical double layer force is repulsive force

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>RM (1µm SiO$_2$/SiO$_2$)</th>
<th>RM (0.1µm SiO$_2$/SiO$_2$)</th>
<th>RM (1µm PSL/SiO$_2$)</th>
<th>RM (0.1µm PSL/SiO$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>10^6</td>
<td>10^5</td>
<td>10^4</td>
<td>10^3</td>
</tr>
<tr>
<td>10^2</td>
<td>10^7</td>
<td>10^6</td>
<td>10^5</td>
<td>10^4</td>
</tr>
<tr>
<td>10^3</td>
<td>10^8</td>
<td>10^7</td>
<td>10^6</td>
<td>10^5</td>
</tr>
<tr>
<td>10^4</td>
<td>10^9</td>
<td>10^8</td>
<td>10^7</td>
<td>10^6</td>
</tr>
</tbody>
</table>

| The smaller the particles, the higher frequency acoustic flow is needed. |
| Soft particles (PSL) are more difficult to remove than hard particle (silica), needing almost an order of magnitude higher frequency. |
Fast Single Wafer Post-CMP Cleaning
Single versus Batch

The Removal Efficiency of Al2O3 particles

Particulate > 0.2 micron

Before Dep
After Dep
After Cleaning

10 min Batch
10 min Batch
20 min Batch
20 min Batch
1 min Single
1 min Single
Complete removal of silica particles down to 100nm is achievable by using a single wafer megasonic cleaning with DI water only.
Megasonic Cleaning of Polished TOX Wafers Using SC1

Defects #

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
<th>150 W</th>
<th>540 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>30°C</td>
<td>600</td>
<td>1000</td>
</tr>
<tr>
<td>10 min</td>
<td>30°C</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>5 min</td>
<td>60°C</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>10 min</td>
<td>60°C</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

Legend:
- 150 W
- 540 W
Megasonics induced acoustic streaming is essential to the removal of submicron and nano-size particles.

As the frequency increases, the acoustic boundary layer thickness decreases and streaming velocity increases thereby increasing the removal (drag) force.

Using DI water, the removal of nano-size particles (10-100 nm) can be best accomplished using acoustic streaming at frequencies larger than 1.3 MHz.

Utilizing the electrical double layer force as a repulse force, by using basic chemistry, removal of 10nm silica particle can be accomplished using megasonic cleaning above 800 kHz.

Acting as removal forces,
- $d>100\text{nm}$, acoustic flow drag force is dominated;
- $30\text{nm}<d<100\text{nm}$, drag force and electrical double layer force are on same level;
- $d<30\text{nm}$, electrical double layer force is dominated;

Soft particles (such as Polystyrene Latex PSL) are more difficult to remove than hard particle (silica), because of adhesion induced deformation, needing almost an order of magnitude higher frequency.