A Microfabricated Micro Gas Analysis System

N. McGruer, J. Hopwood, O. Minayeva and F. Li

Northeastern University
Department of Electrical and Computer Engineering

This project is supported by the National Science Foundation under Grant No. DMI-9980777.

Kevin Denis, Weilin HU and Vivian LU
Goal: To create a low power, inexpensive microsystem consisting of a plasma light source and a microspectrometer that is capable of detecting air-borne contaminants with at approximately 1 ppm.

Challenges:
- Optimize photon generation (plasma) and collection (optics)
- High resolution of the FPI (mirror reflectivity, positioning)
- System integration and parasitic interactions
Micro Gas Analyzer Characteristics

- Operates over a wide range of pressures: ~0.1-20 Torr.
- Pressure compatible with processing system forelines or maintained with house vacuum for atmospheric pressure monitoring.
- Low power requirements, similar to power supply for cell phone, ~1W.
Micro Gas Analyzer Applications

- Environmental monitoring
 - Indoor/outdoor air contamination
 - emissions at source

- Monitoring process system products in foreline

- Monitoring of exhaust streams
Microfabricated Fabry-Perot Spectrometer

Adhesive

Upper Mirror

Actuator

Sense Electrodes

Integrated Photodiode

Substrate
Applications

- Emission Spectroscopy
- Colorimetry
- Optical filtering, communications

Operation

- Free spectral range covers visible spectrum in first order
- Higher resolving power using higher orders
- Electrostatic actuation, ~50 V, low power
- Capacitive sense electrodes for mirror spacing
- Fabrication flow allows high-reflectivity mirrors

<table>
<thead>
<tr>
<th>Cone Half Angle (θ_o)</th>
<th>Increase in FWHM (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>0.07</td>
</tr>
<tr>
<td>2°</td>
<td>0.3</td>
</tr>
<tr>
<td>3°</td>
<td>0.7</td>
</tr>
<tr>
<td>4°</td>
<td>1.2</td>
</tr>
<tr>
<td>5°</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Microspectrometer Fabrication

Fabricate Photodiode

Pattern Electrodes

Sputter deposit copper sacrificial layer

Pattern and electroplate gold cantilever beams ~ 4 microns thick

Remove sacrificial layer to release actuators, sputter deposit lower mirror employing a shadow mask.

Bond separately fabricated upper mirror
Microspectrometer
Transmitted Light at Three Spacings

\[\lambda = 515 \text{ nm} \quad \text{FWHM} = 25\text{nm} \quad \text{RP} = 21 \]

\[\lambda = 575\text{nm} \quad \text{FWHM} = 30\text{nm} \quad \text{RP} = 20 \]

\[\lambda = 625\text{nm} \quad \text{FWHM} = 39\text{nm} \quad \text{RP} = 16 \]
Future Work

• Improve the resolution of the spectrometer

R=84% \rightarrow R=99%
N=1 \rightarrow N~3
Res.\sim30nm \rightarrow Res.\sim1nm

• Integrate a photodiode on-chip
Desirable Properties for a Microplasma

- Low power/Low voltage/Low temperature
 - portable (cell phone power supply)
 - compatible with CMOS electronics
- Electrodeless
 - long life operation in reactive gases
 - “non-wetted” sensor (inert envelope)
 - reduced contamination/sputter erosion
- Small footprint and low gas volume
- Broad operating range of gas pressure
Inductively Coupled Plasma Scaling

- $45,000 \text{ cm}^3$
- 1 kW @ 2 MHz
- $d = 500 \text{ mm}$
- $p = 0.01 \text{ Torr}$

- 0.17 cm^3
- 1 W @ 490 MHz
- $d = 5 \text{ mm}$
- $p = 1 \text{ Torr}$

$p d = \text{ constant}$
Microfabricated ICP

Hybrid package
Glass wafer
Interdigitated capacitor
5 mm coil
Microfabrication Process

- PR
- Cr/Au/TiW Glass Wafer
- Expose/Develop
- TiW etch
- Electroplate Gold
- PR strip
- TiW/Au/Cr etch
- Bond to 10 mm diam. glass chamber
- Spiral coil
- Interdigitated capacitor
- To vacuum system

SEM of Interdigitated Capacitor Structure with 10 micron thick Au
Emission Spectrum of SO$_2$ in Ar

(Argon emission is subtracted)

Intensity (counts)

Wavelength (Angstroms)

196 ppm
873 ppm
4736 ppm

SO$_2^*$

S

Ar

O?
Detection Limit of SO\textsubscript{2} in Ar

Microgas Analyzer Performance Benchmark

Ongoing optimization has achieved 200 ppb.

Detection Limit of SO\textsubscript{2} in Ar

Experimental data

Linear Regression

99% Confidence Bands

3-sigma Detection Noise

\(\text{S}_{\text{peak intensity}} \)

1 ppm

\(\text{SO}_2 \) fraction, ppm
Proposed Work

- Develop ambient gas sensors for cleanroom and wafer environments
- Develop effluent gas sensors for detection of reactor products (foreline, scrubber, exhaust)
- Develop process gas impurity detectors
- Optimize microgas analyzer, 200→1 ppb
- Evaluate sensitivity to H₂O, fluorocarbons.
Water vapor detection

SO$_2$ spectrum (32 ppm in Ar) with water contamination

Intensity / arb. unit

λ / Å

OH
SO$_2^*$
Ar (subtracted)
S

Plasma Engineering Laboratory

Northeastern University